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Electronic coherence transfer has been detected in only a small number of systems despite the potential impact
of these dynamics on natural and artificial light harvesting. Nonlinear spectroscopies designed to probe the
dynamics of electronic coherences are challenged by signal emission associated with electronic populations.
This paper presents a newly developed nonlinear laser spectroscopy capable of measuring intraband electronic
coherences (i.e., for pairs of single exciton states) in molecular aggregates with full suppression of undesired
signal components. In comparison with methods applying all-femtosecond laser pulses, the present experiment
uses both narrowband and broadband pulses to obtain similar information with a greater than 360-fold faster
data acquisition rate. In addition, the technique enhances spectral resolution with experimental control of the
measured line widths. High instrument throughput facilitates the comparison of measurements for a wide
variety of materials. As the first application of this technique, we investigate the dynamics of intraband electronic
coherences in double-walled cylindrical molecular aggregates possessing five slightly different morphologies
controlled by varying the solvent conditions. Interfering coherences associated with pairs of exciton states
give rise to well-resolved quantum beats in the measured signal fields. In addition, coherence transfer processes
are investigated using a superposition of tensor elements (i.e., an analogue of probing population transfer
with pump-probe anisotropy). The comparison of experimental measurements and calculations based on a
theoretical model supports the finding of coherence transfer processes terminating in an electronic coherence
between the inner and outer cylinder excitons.

I. Introduction

Exciton excited states of light-harvesting proteins are gener-
ally delocalized over multiple pigments.1-3 This exciton delo-
calization reflects the preservation of phase relationships at the
individual pigment sites promoted by weak interactions with
the surrounding solvent bath.4-9 Recent experimental6,10-12 and
theoretical13-18 work investigates how exciton coupling over-
comes dephasing processes imposed by system-bath interac-
tions in coherent “wavelike” energy transfer processes. For
example, it has been estimated that the wavelike mechanism
accounts for more than 20% of the energy transfer efficiency
in the Fenna-Matthews-Olson protein of green bacteria.17,18

The finding of electronic coherences between excitons lasting
longer than the corresponding population transfer times is also
remarkable.19-21 These initial observations raised the possibility
that coherent energy transfer processes are restricted to biologi-
cal systems possessing machinery highly optimized through
evolution.6,22 However, similar dynamics were recently detected
in a conjugated polymer at room temperature,11,12 which suggests
that coherent energy transfer may even be important in artificial
systems.

Experiments capable of probing electronic coherence are
challenged by the attainment of adequate time resolution and
the suppression of undesired population terms in the polarization
response, which can dominate over terms corresponding to
electronic coherence. Pump-probe anisotropy experiments are
one exception that has proven effective for probing coherence
between excited states with large angles between their transition
dipoles.5,7,23 In addition, two-dimensional Fourier transform
photon echo experiments detect electronic coherences as
quantum beats in diagonal and cross peaks without special

requirements regarding transition dipole orientations.6,8,24-26

However, photon echo experiments investigating the dynamics
of electronic coherences must also contend with undesired
population terms in the nonlinear polarization. One recent
experiment uses a two-color photon echo spectroscopy for
isolation of signal components associated with electronic
coherence.22 The present work isolates these same signal
components but differs in that it utilizes lasers pulses with
different colors and bandwidths. Thus, our technique possesses
advantages of both time and frequency domain four-wave
mixing spectroscopies. Prospects for this type of experiment
were discussed in an earlier investigation exploring optical
analogues of heteronuclear multidimensional NMR.27

This paper describes the experimental and theoretical aspects
of a specialized technique designed to examine intraband
electronic coherences in molecular aggregates (i.e., coherences
associated with pairs of single exciton states). The experiment
uses multiplex array detection for one-step acquisition of
intraband coherence spectra. Pulse delays are used to suppress
signal contributions arising from improperly ordered field-matter
interactions. Another important outcome of this pulse config-
uration is that the measured intraband coherence line widths
are narrower than the inverse of the dephasing rates. This line-
narrowing effect is significant because it reduces spectral
congestion and facilitates signal interpretation. Data acquisition
times of a few seconds are obtained with use of interferometric
signal detection and the generation of (synchronized) narrow-
band and broadband color tunable laser pulses. By contrast, the
attainment of equivalent information by a time domain method
would require approximately 30 min. Below we show that the
ability of this experiment to quickly measure signals under
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various experimental conditions has already facilitated a deeper
understanding of the C8O3 cylindrical aggregate composed of
the monomer shown in Figure 1.

Self-assembled aggregates of C8O3 have been the subject
of several experimental24,28-31 and theoretical studies.32,33 The
absorption spectrum for C8O3 in 0.01 M NaOH exhibits four
peaks signifying the double-walled cylindrical structure. The
nature of the four electronic transitions has been investigated
extensively28-30 and is understood as follows: (1) the transi-
tion at 16 670 cm-1 is localized on the inner cylinder; (2)
the transition at 17 150 cm-1 represents an exciton localized
on the outer cylinder; (3) the peak at 17 330 cm-1 is more
closely associated with the inner cylinder; (4) the highest
energy transition at 17 860 cm-1 represents an exciton
delocalized between the inner and outer cylinder walls (i.e.,
couples to transitions 1 and 2). Transitions 1, 2, and 4 are
thought to have parallel transition dipoles, which are
orthogonal to the dipole of transition 3.34 Below the morphol-
ogy of C8O3 is varied with control of the concentration of
methanol in an aqueous solution. The known correlation
between methanol concentration and the aggregate morphol-
ogy is owed to von Berlepsch et al. who characterized the
structures using cryogenic transmission electron microscopy.30

The aggregate retains its double-walled cylindrical structure
at the methanol concentrations used here but increases its
diameter to 11 nm, whereas a diameter of 10 nm is found in
pure NaOH solution.

Recent applications of photon echo spectroscopy to C8O3
have discovered excited state electronic coherences persisting
on the 100 fs time scale.24,25,31 Milota et al. investigated the
dynamics of C8O3 in a mixture of water and octanol, where
the aggregate self-assembles into a double-walled cylinder with
a linear absorption spectrum dominated by two transitions.24

Quantum beats were observed in the cross peak corresponding
to the two single exciton states followed by population transfer
from the higher to lower energy state at longer times. Another
photon echo study by the same group examined C8O3 in pure
NaOH solution, where the linear spectrum has four single
exciton transitions (see Figure 1).31 Incoherent nonradiative
relaxation (i.e., population transfer) within the single exciton
manifold was found to proceed with time constants between
109 and 833 fs. The authors observed no evidence of quantum
beats in the photon echo measurements. However, our recent
photon echo study was able to resolve quantum beats with both
28 and 45 fs periods using laser pulses with broader band-
widths.25 The present paper more closely examines these
intraband coherences by suppressing components of the non-
linear polarization associated with electronic populations.

II. Theory

A. Multiplexed Probing of Intraband Electronic Coher-
ences. This section develops a simplified model establishing
the sensitivity of the present technique to intraband (i.e., single
exciton band) electronic coherences in molecular aggregates.
Physical insight motivates the use of several approximations,
which are later supported by numerical calculations in section
II.C. The model identifies experimental conditions that lead to
a useful line-narrowing effect. The technique is capable of
enhancing the spectral resolution of the intraband electronic
coherences beyond the conventional limitations imposed by
dephasing rates; the measured line widths can be narrower than
homogeneous widths of the intraband resonances.

The fundamental observable in four-wave mixing spec-
troscopies is the signal field radiated by the sample, which under
perfect phase-matching conditions is related to the third-order
polarization by

Es(t) )
i2πlωt

n(ωt)c
P(3)(t) (1)

where n(ωt) is the refractive index, l is the sample length, and
c is the speed of light. The polarization, P(3)(t), is found by
convoluting the material response function with three incoming
fields as

P(3)(t) ) ∫0

∞
dt1 ∫0

∞
dt2 ∫0

∞
dt3 [R1(t1, t2, t3) -

R2*(t1, t2, t3)]ENB2(t - t3) ENB1* (t + T - t3 - t2) ×
EBB(t + T - t3 - t2 - t1) + [R2(t1, t2, t3) -
R1*(t1, t2, t3)]ENB2(t - t3)EBB(t + T - t3 - t2) ×
ENB1* (t + T - t3 - t2 - t1) (2)

where ENB1 and ENB2 are “narrowband” pulses, EBB is the
broadband pulse, T is the experimentally controlled delay
defined in Figure 2a, and ti are intervals between field-matter
interactions. This section focuses on the special case in which
Ri(t1, t2, t3) neglects coherence transfer transitions. Expres-
sions for these terms, 0Ri(t1, t2, t3), terms valid in the
homogeneous limit of line broadening, are given in Appendix
A. The superscript “0” [e.g., 0Ri(t1, t2, t3)] signifies that
coherence transfer transitions do not take place. Feynman
diagrams corresponding to these four terms are shown in

Figure 1. (Dashed) Absorption spectrum of monomer. (Solid) Absorp-
tion spectrum of the C8O3 cylindrical molecular aggregate in 0.01 M
NaOH. The structure of the monomer is shown in the inset. The relative
absorbances for the monomer and aggregate are unrelated.

Figure 2. (a) Experimental pulse sequence. ENB1 (green) and EBB (blue)
are time-coincident, whereas ENB2 (red) arrives at the sample after an
experimentally controlled delay, T. Intervals between field-matter
interactions times are given as ti. (b) Illustration of model outlined in
section II.A. The narrowband (NB1, green) and broadband (BB, blue)
pulses interact with the material to produce an electronic coherence
(gray) evolving at the frequency ωab. The signal field (purple) envelope
is the product of the envelopes for the electronic coherence and ENB2

(red). The signal field frequency is given as the sum ωNB + ωab (eq 8).
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Figure 3a. Additional terms accounting for coherence transfer
will be discussed in the following section.

Evaluation of the integrals in eq 2 is simplified with three
approximations. Approximation 1 removes the ti intervals from
the arguments of the two narrowband pulse envelopes. This
approximation recognizes that the experimental implementation
uses narrowband pulses with durations long compared to the
dephasing times of the material coherences. Approximation 2
removes the t1 and t3 intervals from the argument of the
broadband pulse envelope by the same argument as 1. This is
generally not a strong approximation when using 20-30 fs
broadband pulses but is reasonable here because the experiment
is most sensitive to dynamics in t2, whereas dynamics in t1 and
t3 contribute indirectly. Approximation 3 assumes the spectral
width of the broadband pulse is greater than the material line
widths for individual exciton resonances, but not broad com-
pared to the full manifold of single exciton transitions. The
envelope of the broadband pulse is then written as a delta
function. Additional background on these approximations is
given in Chapter 13 of ref 20.

For illustration, we evaluate the polarization component
associated with 0R1(t1, t2, t3). For the purpose of integral
evaluation, we assume applied fields with double-sided expo-
nential envelopes (i.e., Lorentzian spectra)

Ej(t) ) exp(-iωjt - Λj|t|) (3)

This choice of field shape will facilitate the discussion line-
narrowing effects below. The 0R1(t1, t2, t3) polarization compo-
nent is given by

PR1
(3)(t) ) ∫0

∞
dt1 ∫0

∞
dt2 ∫0

∞
dt3

0R1(t1, t2, t3)ENB2(t) ×
ENB1* (t + T) exp[-iωBB(t + T - t3 - t2 - t1)] (4)

or with 0R1(t1, t2, t3) from Appendix A as

PR1
(3)(t) ) ( i

p)3 ∑
ab

µgbµagµbgµgaexp [iωNBT

- iωBB(t + T) - ΛNB|t + T|-ΛNB|t|] ×

∫0

∞
dt1 ∫0

∞
dt2 ∫0

∞
dt3θ(t1)θ(t2)θ(t3) ×

exp (-iωagt1 + iωBBt1 - Γagt1) ×
exp (iωbat2 - iωNBt2 + iωBBt2 - Γabt2) ×

exp (-iωagt3 + iωBBt3 - Γagt3) δ(t + T - t2) (5)

where a and b are dummy indices, the summation involves all
excited electronic states, and it is assumed that only the ground
state, g, is populated at thermal equilibrium.20,35 Integration of
eq 5 yields

PR1
(3)(t) ) ( i

p)3 ∑
ab

µgbµagµbgµgaσag
2 (ωBB)�ab(t) (6)

where

σab(ω) ) ( 1
iω - iωab - Γab

) (7)

and

�ab(t) ) θ(t + T) exp[-iωabT - i(ωNB + ωab)t -
Γab(t + T) - ΛNB|t|] (8)

Corresponding expressions for PR2*
(3) (t), PR2

(3)(t), and PR1*
(3) (t) are

given in the Supporting Information.
Equation 8 finds that the signal field shape primarily reflects

dynamics occurring in the t2 interval between field matter
interactions. The signal frequency is shifted from that of the
narrowband pulse, ωNB, by an amount equal to the intraband
coherence frequency, ωab. Furthermore, the signal field duration
is governed by the dephasing rates of the intraband coherences,
Γab. Figure 2b emphasizes the time-domain view of a line-
narrowing effect whose frequency domain interpretation is given
below. The rising side of ENB2* (at negative t) overlaps with
the decay of the Fab(t2) electronic coherence when T > ΛNB

-1.
In this configuration, ENB2* is able to sustain the Fab(t2)
coherence for an amount of time greater than that imposed by
the dephasing rate, Γab.

The signal field shape is defined by the Fourier transform

∫ -T
∞ �ab(t) exp(iωtt) )

exp[-(iωab + Γab)T] - exp[(-iωt + iωNB - ΛNB)T]

iωt - iωab - iωNB - Γab + ΛNB
-

exp[-(iωab + Γab)T]

iωt - iωab - iωNB - Γab - ΛNB
(9)

The first and second terms on the right side of eq 9 predict
the signal bandwidth to be narrower and broader than the pure

Figure 3. Feynman diagrams describing signal emission in the (a)
absence and (b) presence of coherence transfer. The 0R terms in (a) do
not involve coherence transfer. The response functions, iR, in (b) denote
coherence transfer transitions in the time interval ti. Index g represents
the ground electronic state, whereas a, b, c, d, and e are dummy indices
running over all single and double exciton energy levels. Only resonant
terms survive integration of eq 2.
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homogeneous line width, Γab, respectively. When the bandwidth
of ENB is much less than the line width of the coherence, we
have

∫-T

∞
�ab(t) exp(iωtt) ≈
-exp[(-iωt + iωNB - ΛNB)T]

-iωt + iωab + iωNB + Γab - ΛNB
Γab/ΛNB . 1

(10)

whereas when Γab/ΛNB ≈ 1 and the pulse delay, T, is small

∫-T

∞
�ab(t) exp(iωtt) ≈

-
exp[-(iωab + Γab)T]

iωt - iωab - iωNB - Γab - ΛNB
Γab/ΛNB ≈ 1, T ≈ 0

(11)

Equation 10 dominates under the experimental conditions
defined in section III. The use of delays with T > ΛNB

-1 reduces
the spectral width of the signal because Γab and ΛNB enter the
denominator with opposite signs. This is a key attribute of the
present experiment because narrowing of the signal bandwidth
reduces spectral congestion and promotes resolution of intraband
coherences in multilevel excitonic systems.

B. Modeling Coherence Transfer in the Homogeneous
Limit. This section presents a model for the nonlinear spec-
troscopy introduced in section II.A that accounts for coherence
transfer processes in the homogeneous limit of line broadening.
Expressions describing coherence transfer between density
matrix elements are first presented. The model builds on
Redfield theory19 and an earlier treatment of collisional coher-
ence transfer by Stenholm.36 Wright and co-workers have
captured the main features of their infrared coherence transfer
spectroscopy with a similar model.37,38 These formulas are then
used to obtain response functions accounting for coherence
transfer in the t1, t2, and t3 intervals between field-matter
interactions. Electric field polarization effects are also incorporated.

Coherence transfer dynamics between the density matrix
elements, Fab and Fcd, is described by a pair of coupled
differential equations

Ḟab(t) ) (-iωab - Γab - κab,cd)Fab(t) + κcd,abFcb(t)
(12a)

Ḟcd(t) ) (-iωcd - Γcd - κcd,ab)Fcd(t) + κab,cdFab(t)
(12b)

where κab,cd is the coherence transfer rate corresponding to the
transition Fab f Fcd and κcd,ab is related to κab,cd by detailed
balance. With the initial conditions, Fab(0) ) Fcd(0), we obtain
the solutions36

Fab(t) ≈ ηcd,ab[Icd(t) - (1 - ηcd,ab
-1 )Iab(t)] (13a)

Fcd(t) ≈ ηab,cd[Iab(t) - (1 - ηab,cd
-1 )Icd(t)] (13b)

where

ηab,cd )
κab,cd

i(ωcd - ωab) + Γcd - Γab
(14)

and the propagation function Iab(t) is given by eq A5. Here it is
assumed that only a single coherence transfer transition occurs
(e.g., Fab f Fcd f Fef is not allowed) because κab,cd, κcd,ab ,
Γab, Γcd.

Time evolution of Fcd(t) is well-described by eq 13b when t
, (κab,cd + Γab)-1. However, at longer times, the Fab coherence

decays and no longer feeds Fcd when Γab > Γcd, which transforms
the temporal beats at ωab - ωcd into evolution at the single
frequency, ωcd. That is

Fcd(t) ≈ (1 - ηab,cd)Icd(t) t . (κab,cd + Γab)
-1

(15)

A good approximation to the exact solution of eq 13b is

Fcd(t) ≈ ηab,cd{exp[-(Γab + κab,cd)t][Iab(t) - (1 - ηab,cd
-1 )Icd(t)]

-(1 - exp[-(Γab + κab,cd)t])(1 - ηab,cd
-1 )Icd(t)} ≈

ηab,cd{Iab(t) exp(-Γabt - κab,cdt) - (1 - ηab,cd
-1 )Icd(t)} (16)

Equation 16 interpolates between solutions obtained at t ,
(κab,cd + Γab)-1 and t . (κab,cd + Γab)-1. We have confirmed
that eq 16 agrees with the converged numerical solution of eq
12b. Similar equations can be written for Fab(t).

With eq 16, response functions accounting for coherence
transfer dynamics can now be obtained. Each of the four
diagrams in Figure 3a yields three additional terms correspond-
ing to coherence transfer during each of the three time intervals
between field-matter interactions. Feynman diagrams for all
terms involving coherence transfer are shown in Figure 3b. The
response functions in Appendix B are obtained with eq 16 by
defining a new propagation function for the ti time interval in
which coherence transfer occurs

Kab,cd(ti) ) ηab,cdΦab,cd{-Icd(ti) +
Iab(ti) exp[-(Γab + κab,cd)ti]} (17)

where the rule

Φab,cd ) (1 - δab)(1 - δcd){δac(1 - δbd)+δbd(1 -
δac) + (1 - δac)(1 - δbd)} (18)

restricts the summations over dummy indices to coherences (not
populations) and also ensures that Fab * Fcd in the transition
Fabf Fcd. In summary, the Fcd density matrix element given by
eq 16 can now be restated as

Fcd(t) ) Icd(t) + Kab,cd(t) (19)

Equation 19 shows that the full response function accounting
for coherence transfer in ti superposes two terms. Appendix B
addresses the component of the nonlinear response associated
with the Kab,cd(ti) term on the right side of eq 19. Essentially,
the equations in Appendix B are obtained by substituting
Kab,cd(ti) of eq 17 for the corresponding Iab(ti) function in
Appendix A. This straightforward exchange of Iab(ti) and Kab,cd(ti)
is possible in the limit of fast bath modulation (i.e., homoge-
neous limit of line broadening) because dynamics occurring in
the three time intervals are uncorrelated.20 For example, the 0R1

term evolves according to Iag(t1) in t1, whereas 1R1 (eq B1)
describes coherence transfer in t1 with substitution of Kag,cg(t1).
The 1R1 Feynman diagram in Figure 3b shows that coherence
transfers from Fag(t1) to Fcg(t1) in t1. The index a used for the t2

and t3 propagations functions in 0R1 must then be replaced by
index c for 1R1. Thus, the products Iag(t1)Iab(t2)Iag(t3) and
Kag,cg(t1)Icb(t2)Icg(t3) describe dynamics for the 0R1 and 1R1 terms,
respectively.

Electric field polarization effects are accounted for with
bookkeeping of the material dipole with which each of the four
fields interacts. Here the notation of ref 39 is used. For example,
the orientational component of the term 0R1 is given as
〈Rbg�gaγgbφag〉, where R, �, γ, and φ, respectively, denote the
polarizations of the fields, ENB1, EBB, ENB2, and ES. We use this
convention for all terms in the response function regardless of
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the order of field-matter interactions. Signal contributions by
individual terms can then be discussed on the same footing given
a particular lab frame tensor element (e.g., ZZXX or ZXZX).
The 1R1 term modifies the tensor notation of 0R1 with the
substitution a f c for all field-matter interactions following
coherence transfer. The polarization tensor for 1R1 is therefore
written as 〈Rbg�gaγgbφcg〉. Together with the Kab,cd(ti) propagation
function discussed in the previous paragraphs, the 1R1 term in
the response function is given by

1R1(t1, t2, t3) ) ( i
p)3 ∑

abc

〈Rbg�gaγgbφcg〉Kag,cg(t1)Icb(t2)Icg(t3)

(20)

where a, b, and c are dummy indices running over all excited
electronic states. The other terms in Appendix B are found by
the same procedure.

The full nonlinear response functions in Appendix C super-
pose all terms in Appendix B with those associated with the
first term on the right side of eq 19. These additional terms
radiate signals at times short compared to the inverse of the
damping rate, which includes contributions from both dephasing
and coherence transfer (i.e., these are the feeding coherences).
For generalization to a multilevel system, these feeding coher-
ences must damp according the sum of all coherence transfer
channels. Appendix C accounts for these parallel coherence
transfer channels with an ad hoc damping parameter, 
ab (see
eq C6). A superior model will explicitly solve a quantum master
equation without restricting terms to a single coherence transfer
within a particular time interval ti. However, the present model
captures the essential photophysics and establishes the informa-
tion content of the experiment.

C. Model Calculations. Here eq 2 is numerically integrated
to explore signatures of coherence transfer in a five-level model
system with single exciton electronic structure resembling the
C8O3 cylindrical aggregate. The line shapes and transitions
dipoles of the model are parametrized for agreement with the
spectroscopic measurements discussed in section IV. Calcula-
tions will first examine the line-narrowing effect predicted under
several approximations in section II.A. We will then define
general signatures of coherence transfer in the signal field
amplitude, phase, and polarization. Knowledge of these signa-
tures will be used to interpret the measured signals below.

Figure 4a overlays the spectrum of EBB and the ENB1 & ENB2

pulse pair on the linear absorption spectrum of a five-level model
system (see Appendix D). The narrowband pulses are tuned to
the lowest energy single exciton transition at 16 667 cm-1,
whereas the three higher energy transitions are in resonance with
EBB. The parameters of the model system, given in Table 1, are
constrained by both the linear and nonlinear experimental
measurements discussed in section IV. Coherence transfer rate
constants governing dynamics within a particular time interval
are fixed to the same value for transitions in which the final
coherence possesses a lower frequency than the initial coher-
ence; the detailed balance condition is used to compute rate
constants for the reverse processes. This constraint is applied
to reduce the total parameter space. It is possible to achieve
better agreement with the experimental line shapes by freely
varying all coherence transfer rates. However, the present model
captures the essential physical insight needed to interpret our
data.

Nonlinear signals computed by numerical integration of eq
2 are given in Figure 4c for laser pulses with all-parallel
polarizations (i.e., ZZZZ tensor element). The signals are
computed with T ) 0, 150, and 300 fs. Comparison of the

calculated signals reveals a clear narrowing of the line widths
with increasing delay, T, as predicted by section II.A. Also
significant is the presence of three peaks corresponding the three
excited state electronic coherences in t2; e1 forms coherences
with the higher energy electronic states, e2, e3, and e4. The
dispersed signal reflects a Fourier transform of the dynamics
occurring in t2. The frequencies of the intraband coherences map
on to the domain ωt - ωNB.

Coherence transfer transitions broaden the line widths of
transitions in the linear spectra shown in Figure 5a and b. For
this reason, section IV will employ the linear spectra as a
constraint for the parametrization of nonlinear response functions

Figure 4. (a) Absorption spectrum (solid) of the five-level model
system computed with the parameters in Table 1. Dashed lines
decompose the absorption spectrum into the sum of four electronic
transitions. Overlayed are spectra of the narrowband (NB1 and NB2,
blue) and broadband (BB, red) pulses. (b) Electronic structure of the
model system. (c) Nonlinear signal, |P(3)(ωt)|, computed by numerical
integration of eq 2 with the response function given in Appendix C.
The frequency, ωt - ωNB, is the intraband coherence frequency.

TABLE 1: Parameters of Calculated Signals

parameter value

ωNB1 ) ωNB2 16667 cm-1

ωBB 17442 cm-1

τNB1 ) τNB2
a 210 fs

τBB
a 25 fs

ωe1g 16667 cm-1

ωe2g 17167 cm-1

ωe3g 17427 cm-1

ωe4g 17867 cm-1

Γe1g 50 cm-1

Γe2g 90 cm-1

Γe3g 200 cm-1

Γe4g ) Γe2e4 270 cm-1

Γe2e3 ) Γe2e5 300 cm-1

κe4g,e3g
-1 ) κe4g,e2g

-1 ) κe4g,e1g
-1 )

κe3g,e2g
-1 ) κe3g,e1g

-1 ) κe2g,e1g
-1

628 fs

κe4e1,e3e1
-1 ) κe4e2,e2e1

-1 ) κe3e1,e2e1
-1 32 fs

µbe1g 2.02x̂ + 0ŷ + 0ẑ
µbe2g 1.45x̂ + 2.10ŷ + 0ẑ
µbe3g 1.35x̂ + 2.34ŷ + 0ẑ
µbe4g 2.53x̂ + 3.02ŷ + 0ẑ
T 300 fs

a Full width at half-maximum of Gaussian electric field envelope.
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used for comparison with experiments. Spectral and temporal
amplitudes of nonlinear signal fields are given in Figure 5c and
d for the ZZZZ tensor element. These calculations compare three
conditions: no coherence transfer; coherence transfer only in
t2; and coherence transfer in t1, t2 and t3. The neglect of
coherence transfer in t2 has a major effect on the spectral and
temporal profiles. The spectral amplitudes skew toward smaller
and larger frequencies, ωt - ωNB, in the presence and absence
of coherence transfer, respectively. Essentially, these calculations
reflect the dominance of terms transitioning into lower frequency
coherences; the reverse processes contribute more weakly
because of detailed balance. By contrast, the absence of
coherence transfer in t1 and t3 has a relatively minor effect on
the signals. In part, this reflects the fact these transitions are
taken to be 20 times slower due to constraints imposed by the
linear spectrum (see section IV). The temporal amplitudes in
Figure 5e give similar information. The presence of multiple
spectral peaks manifests as quantum beats between coherences
in the time domain, whereas the spectral line widths govern
the signal pulse duration. Similar insight is obtained for the
ZXZX tensor element with the calculations presented in Figure
5e and f.

The calculated temporal profiles in Figure 5d and f show that
P(3)(t) begins radiating the signal field immediately after
interactions with the ENB1 and EBB pulses, which arrive to the
sample at t )-300 fs. Furthermore, most of the signal emission
occurs before the peak of the ENB2 pulse has reached the sample
at t ) 0 fs. These calculations show that the time of signal
emission is governed by fast dephasing of the intraband
coherences under conditions defined by the parameters given
in Table 1. In essence, the peak of the time domain signal
profiles reflects a compromise between two competing effects:
dephasing of the intraband coherences forces signal emission

at earlier t; the rise in amplitude of the ENB2 pulse forces signal
emission at later t. In fact, these two competing factors underlie
the line-narrowing effect described by eq 10 and simulated in
Figure 4c. Section IV shows that temporal profiles of the
measured signal fields agree with the model in that the peaks
are found near t ) -300 fs.

Figure 5 confirms that the signal closely reflects dynamics
of the intraband coherences during the t2 interval as suggested
by section II.A. The signal field (i.e., amplitude and phase)
possesses both temporal and spectral information on these
dynamics with resolution governed by the line width of the
narrowest resonance. Spectrograms are a useful representation
for complex electric fields and can be calculated with40-42

S(t, ωt) ) | ∫-∞

∞
dτ ES(τ)g(t - τ) exp(-iωtτ)| (21)

where g(t - τ) is a gate function and ES(τ) is the measured
signal field. The right side of eq 21 is not squared for
enhancement of the weakest features in the signal. The calcula-
tions below take g(t - τ) to be a Gaussian function with a width
equal to that of the 25 fs broadband pulse. S(t, ωt) essentially
decomposes the signal field, ES(τ), into individual intraband
coherences identified by the detection frequency ωt (i.e.,
coherence frequency is ωt - ωNB). A slice of S(t, ωt) at ωt

informs on the dynamics in t2 which map onto t by the argument
of section II.A.

Signal spectrograms computed with eqs 2 and 21 are given
in Figure 6; these calculations use the same six sets of
parameters as Figure 5a-d. The first row presents ZZZZ, ZXZX,
and ZZZZ - ZXZX tensor elements for a system with all
coherence transfer rates set equal to zero; parameters are
otherwise given by Table 1. The ZZZZ and ZXZX time-frequency
shapes appear quite similar, whereas the difference shows that

Figure 5. (a) Absorption spectrum (solid) of the five-level model
system computed with the parameters in Table 1. Colored lines
decompose the absorption spectrum into the sum of four electronic
transitions. (b) Absorption spectrum (solid) of the five-level model
system computed with the parameters in Table 1, except that all
interband coherence transfer rate constants, κeig,ejg

-1 , are equal to zero.
Nonlinear signals are computed by numerical integration of eq 2 with
the response function given in Appendix C: (c), (e) |P(3)(ωt)|; (d), (f)
|P(3)(t)|. Panels (c)-(d) and (e)-(f), respectively, represent the ZZZZ
and ZXZX tensor elements. Calculations are performed with three sets
of parameters: (black line) Table 1 except all coherence transfer rates
are zero; (red line) Table 1 except all interband coherence transfer rate
constants, κeig,ejg

-1 , are equal to zero; (blue line) all parameters of Table
1 are used.

Figure 6. Equation 2 integrated with the response function in Appendix
C. Spectrograms are computed with eq 21, where the gate width is
equal to 25 fs. Calculations are performed with three sets of parameters:
(a)-(c) Table 1 except all coherence transfer rates are zero; (d)-(f)
Table 1 except all interband coherence transfer rate constants, κeig,ejg

-1 ,
are equal to zero; (g)-(i) parameters of Table 1 are used. The first,
second, and third columns, respectively, correspond to the ZZZZ, ZXZX,
and ZZZZ - ZXZX tensor elements.
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the ZZZZ element dominates at greater coherence frequencies
with a weak negative feature (<2.5% signal amplitude) near ωt

- ωNB ) 300 cm-1. The calculation in the second row
additionally allows for coherence transfer in t2 (not in t1 or t3).
Detailed balance dictates that coherence transfer transitions shift
the signal amplitude in Figure 6d and e toward lower frequen-
cies, ωt - ωNB, as time, t, increases (i.e., “chirp” in the signal
field phase). This effect is consistent with the spectral skew
found in Figure 5c and d. The chirp in the signal field phase is
also apparent in Figure 6g and h where coherence transfer is
allowed in all three time intervals.

The chirped signal field phase alone may not be a robust
signature of coherence transfer, particularly for systems in which
coherence transfer dynamics manifest only as weak perturba-
tions. However, coherence transfer dynamics are readily identi-
fied by a comparison of tensor elements because the Feynman
diagrams in Figure 3a and b interact with different sequences
of transition dipoles. For example, parts f and i of Figure 6
exhibit features quite sensitive to coherence transfer dynamics.
Specifically, sign changes in the ZZZZ - ZXZX tensor elements
are calculated with negative features 5%-10% of the maximum
ZZZZ amplitudes (Figure 6d and g). This sign change skews in
the direction of the signal chirp: toward lower frequencies, ωt

- ωNB, and increasing time, t. By contrast, the negative feature
in Figure 6c is less than 2% of the ZZZZ amplitude in Figure
6a. Line shapes influenced by coherence transfer are also quite
different than that in Figure 6c with Figure 6f and i exhibiting
a positive feature with a “boomerang” shape.

To summarize, the calculations presented in this section
identify two signatures of coherence transfer that will be useful
for interpreting experimental measurements. First, the simulta-
neous fitting of linear and nonlinear signals provides a powerful
constraint on the parameters. For example, Figure 5 shows that
coherence transfer in t2 skews the spectral amplitude toward
smaller coherence frequencies; this effect should be readily
detectable by comparison with nonlinear signals computed using
transition dipole magnitudes set by a fit to the linear spectrum.
We have also defined signatures of coherence transfer in the
signal field shape for the difference in tensor elements, ZZZZ
- ZXZX. In general, coherence transfer skews the time-
frequency shape toward increasing t and decreasing ωt - ωNB.
However, this effect may represent only a small fraction of the
total signal. The orientational part of the response can be
leveraged for increased sensitivity. The appearance of the ZZZZ
- ZXZX spectrogram depends on the transition dipole orienta-
tions, which can be obtained by reproducing the ratio in spectral
amplitudes for the two signal fields with further constraints
imposed by the linear spectrum. For the present model system,
which is motivated by the C8O3 cylindrical aggregate, a sign
change in the signal is predicted with increasing t and decreasing
ωt - ωNB.

III. Experiment

The C8O3 dye molecule shown in the inset of Figure 1 was
purchased from FEW Chemicals and used without further
purification. Solutions of C8O3 in 10 mM NaOH were diluted
with methanol by use of a volumetric pipet to (vol %)
concentrations of 0, 5, 10, 13, and 15. At methanol concentra-
tions greater than 15%, absorption of the monomer at 18 870
cm-1 becomes comparable to that associated with the ag-
gregate.30 All solutions were prepared with concentrations giving
an absorbance of 0.3 at 16 670 cm-1 in a 1 mm path length
sample cell. The resulting absorbance spectra reproduce those
shown in Figure 1 of ref 30.

Experiments are based on a Quantronix Integra C Titanium
Sapphire amplifier producing 120 fs, 800 nm, 2.0 mJ laser pulses
at 1 kHz. This laser system pumps two home-built optical
parametric amplifiers (OPA) for generation of both broadband
and narrowband laser pulses tunable between 500 and 750 nm.
The broadband pulses are produced in a standard noncollinear
OPA (NOPA)43-45 in which the 400 nm pump pulses are
stretched to 450 fs duration by transmission through a 20 cm
fused silica glass block (ESCO Products). Figure 7a shows that
the NOPA spectrum spans the 500-750 nm wavelength range.
A portion of the full spectrum is filtered in a fused silica prism
compressor for use in experiments as the broadband pulse (see
section II).

The narrowband OPA (NB-OPA) is seeded with a portion
of the broadband NOPA ouput (17 µJ), which is then spectrally
filtered in an all-reflective, grating-based compressor aligned
for zero dispersion (i.e., a 4F setup) as shown in Figure 7b.46,47

Translation of the slit position at the 2F plane selects portions
of the broadband NOPA spectrum centered at different frequen-
cies with bandwidths as narrow as 20 cm-1. The slit width was
set to filter 70 cm-1 pulses for the present measurements.
Amplification of the (100-250 nJ) narrowband seed pulse
without significant spectral broadening requires that the pump
pulse duration is greater than or equal to that of the broadband
seed.48,49 Chirped pump pulses with 1 ps durations are obtained
by first producing 125 µJ, 400 nm pulses as the second harmonic
of the compressed laser fundamental and then stretching the
400 nm pulse by transmission through 50 cm of fused silica.
The narrowband seed pulse is amplified in a BBO crystal with
the chirped pump pulses using a collinear geometry.

The interferometer shown in Figure 8 resembles earlier
nonlinear spectroscopy experiments in that the laser beam
geometry is generated with a diffractive optic (DO) for passively

Figure 7. (a) Spectrum for broadband NOPA (black) used to seed
NB OPA and typical spectra for tunable amplified NB pulses. (b)
Schematic for NB-OPA showing 30 cm focal length lenses (L);
telescope composed of 7.5 and -5.0 cm focal length lenses (T); 20
cm focal length spherical mirror (SM); 1200 g/mm grating (G); 50 cm
of fused silica glass (50 cm FS); BBO1 is 0.7 mm thick, type I, and θ
) 29.2°; BBO2 is 1.5 mm thick, type I, and θ ) 31.5°.
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phase-stabilized interferometric signal detection.42,50-57 We use
a 1 mm thick fused silica DO producing an angle of 4.5°
between the (1 diffraction orders at 575 nm (Holoeye). The
broadband and narrowband laser pulses are spatially overlapped
at the DO to produce two pulse pairs. A fused silica glass
window and a pair of 175 µm thick microscope coverslips
(Fisher Scientific) are placed in the path of the broadband pulse
to control its delay with respect to the local oscillator, which is
a replica of the broadband pulse (i.e., a different diffraction
order). The local oscillator pulse is attenuated with a 2 mm thick
BK7 neutral density filter (OD ) 3) and arrives at the sample
800 fs before the narrowband pulse. Additional glass coverslips
are placed in the ENB2 beam path to impart the delay, T ) 300
fs (see Figure 2). The signal is collinear with the local oscillator
after the sample by the kS ) -kNB1 + kBB + kNB2 phase
matching geometry. Pulse energies at the sample are 5 and 15
nJ for the broadband and narrowband pulses, respectively.
Signals are detected in line-binning mode with a back-
illuminated CCD array (Princeton Instruments PIXIS 100B)
mounted on a 0.3 m spectrograph (Princeton Instruments).

Scattered light from the broadband laser pulse is subtracted
by chopping the narrowband pulses with a mechanical shutter
and calculating the difference, narrowband pulses on -
narrowband pulses off. Each spectrum represents the average
of 10 differences with 250 ms integrations times for a total data
acquisition time of less than 5 s. The short data acquisition time
helps to avoid sample degradation, which is observed after
approximately 5 min exposure to the laser pulses. The sample
is held in a 1 mm thick cell (0.4 mL) with an open slit top and
is gently stirred during the experiment with a piece of inert
plastic mounted on an electric toothbrush motor. Under these
conditions, we observe no changes in the linear absorption
spectra during the course of the experiment.

Phase-resolved signals are obtained with signal detection by
spectral interferometry.41,58,59 This paper detects and processes
four-wave mixing signal by the same algorithm used in earlier
photon echo41,53,60 and transient grating experiments.42 Reference
61 discusses the attainment of passively phase-stabilized signal
and local oscillator fields achieved with a similar pulse
configuration and interferometer. The Supporting Information
provides an example of raw and processed signals.

The quasi-instantaneous nonlinearity of the transparent solvent
can give rise to significant signal emission in four-wave mixing
spectroscopies when the laser pulses are overlapped in the
sample.62,63 The experiments in this paper use a pulse delay, T
) 300 fs, with 210 fs narrowband and 25 fs broadband laser
pulses. We measure no signal radiated by the quasi-instantaneous
nonlinearity of the solvent under these conditions. Raman

transitions of the aqueous solvent are also not observed.
However, this is not a general result. Raman transitions of
solvents with stronger responses (e.g., toluene) are observed
with these experimental conditions (see Supporting Information).

Calibration of the absolute phase is particularly difficult
because the measurement of different tensor elements requires
rotation of the wave plates (see Figure 8), which disrupts the
signal phase. In principle, the signal phase for the solutions can
be determined by comparison to Raman transitions of the pure
solvent (i.e., an internal standard for phase). However, Raman
transitions of the aqueous solutions used here are quite weak,
which prohibits reliable characterization of the absolute phase.
The measurements below examine relaxation dynamics by
utilizing the higher order spectral phases measured under
different polarization conditions. Knowledge of the absolute
phase is not essential to the experimental information content.

IV. Results and Discussion

A. Effect of Methanol on Linear Absorption Spectra of
C8O3. Linear absorption spectra of solutions containing various
concentrations of methanol are shown in Figure 9. Significant
changes in the absorption spectra are observed as the methanol
concentration increases from 0% to 15%: transition 1 (see Figure
1) shifts to longer wavelengths; transitions 2-4 are replaced
with a single band centered at 575 nm. The morphologies
associated with the solvent mixtures were investigated with cryo-
transmission electron microscopy and circular dichroism mea-
surements by von Berlepsch et al.30 The authors found that
methanol induces a 1 nm increase in the 10 nm cylinder diameter
measured for the pure NaOH solution. It was concluded that
methanol causes significant reorganization of the molecules
within the cylinder without inducing changes in the overall
shape.

B. Effect of Morphology on Nonlinear Response. The
spectral and temporal amplitudes shown in Figure 10 correspond
to the full measured signals fields; these representations can be
regarded as time and frequency integrated, respectively. The
spectra are obtained after removing the local oscillator contribu-
tion to the measured spectral interferogram, whereas the
temporal amplitude is given by a Fourier transform of the
measured spectral amplitude and phase.41,58,59 The similar signal
amplitudes found for both the ZZZZ and ZXZX tensor elements
indicate that the transition dipole connecting the ground state
to the lowest energy single exciton level is nearly 55° relative
to the other single exciton transition dipoles.39 These transition

Figure 8. Diffractive optic (DO) based interferometer: 30 cm focal
length spherical mirror (SM1); 20 cm focal length spherical mirror
(SM2); 2 mm thick BK7 neutral density filter (ND); 2 mm thick fused
silica window (W); half-wave plates (WPs); polarizer (Pol); spectrom-
eter (Spec).

Figure 9. (a) Spectra of narrowband (black) and broadband (red)
pulses. (b) Absorption spectra of 0.01 M NaOH solutions of cylindrical
aggregates with various (vol %) concentrations of methanol.
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dipoles were already interpreted as being either parallel or
perpendicular to that of the lowest energy transition34 as required
for an ideal cylinder.33 One explanation for this discrepancy is
the helical twisting of multiple tubules;28 deviation from the
straight tubular shape breaks the symmetry that causes
the transition dipoles to align either parallel or perpendicular
to the long axis of the tube.33 In addition, the transition dipole
orientations were assigned based on experiments for a solution
in a flow system, whereas the present measurements stir the
solution. It may be that flowing the solution suppresses bundle
formation and/or forces straightening of the tubes. We have
confirmed that the absorption spectra are robust to sam-
ple stirring and that the linear absorption spectrum is indepen-
dent of the electric field polarization (i.e., isotropic sample).

The spectral amplitudes in the first column of Figure 10
exhibit three peaks representing each of the three coherences
between the exciton localized to the inner cylinder (i.e.,
transition 1 in Figure 1) and those at higher energies. The lowest
energy coherence exhibits the strongest response despite the
relatively small spectral overlap of the broadband pulse with
transition 2 in the linear spectrum (see Figure 9). Figure 10
also shows that increasing the methanol concentration reduces
the signal strength for the ZZZZ tensor elements compared to
ZXZX. One clear difference between the simulations in Figure
4 and the experimental spectra in Figure 10 is that they possess
resonances at frequencies, ωt - ωNB, of 760 and 940 cm-1,
respectively. Better agreement with the nonlinear measurement
is readily achieved by increasing the value of the parameter
ωe3g (see Table 1). However, this worsens the agreement with
the linear spectrum. It is possible that the assumption of four
exciton states is not adequate for describing the nonlinear
measurement. That is, an exciton contributing weakly to the
linear spectrum may be involved in particularly long-lived
intraband coherences if thermal fluctuations in its energy are
correlated with the other exciton states.22,25 This issue is still
under investigation.

The temporal amplitudes in the second column tell a story
similar to the spectral amplitudes in the first column. The
presence of multiple coherences gives rise to quantum beats in
the signal field. These beats are most pronounced for 0% and
5% methanol concentrations. Comparison of the temporal
profiles for different tensor elements points to the t-dependent
polarization effect discussed in section II.C. At low methanol
concentrations, the ZZZZ amplitude dominates at t < -260 fs,
whereas ZXZX is larger for t > -260 fs. The t-dependent
amplitudes of the different tensor elements mirrors dynamics
in t2 by the argument presented in section II.A.

Spectrograms corresponding to the ZZZZ and ZXZX tensor
elements are shown in Figure 11, where each row represents a
different methanol concentration. Differences in the spectrogram
shapes are not readily identified by inspection. However, the
experimental spectrograms with methanol concentrations <13%
exhibit shapes most similar to the calculated spectrograms shown
in Figure 6g and h. Specifically, the experimental and calculated
spectrograms both possess a “U-shaped” feature near t ) -200
fs. By contrast, the calculated spectrograms in Figure 6d and e
exhibit an upside down U-shaped feature. The parameters used
to compute these signals identify this feature as a signature of
coherence transfer in the t1 and t3 time intervals, where detailed
balance again explains the skew toward lower coherence
frequencies.

Difference spectrograms, ZZZZ - ZXZX, are presented in
Figure 12. At methanol concentrations less than 13%, the
measured signals exhibit a sign change similar to that calculated
in Figure 6i, where the spectrogram measured for the 10%
methanol solution is in best agreement with the calculation. We
interpret these data as reflecting coherence transfer for solution
with less than 13% methanol concentration. The experiment does
not necessarily rule out coherence transfer processes for

Figure 10. Measured spectral, |ES(ωt)|, and temporal, |ES(t)|, signal
field amplitudes for the ZZZZ (black) and ZXZX (red) tensor elements
are shown in the left and right columns, respectively. These are
amplitudes of the full signal fields (not intensities). |ES(ωt)| and |ES(t)|
can be regarded as time and frequency integrated, respectively. The
rows organize data by (vol %) concentrations of methanol: (a)-(b)
0%; (c)-(d) 5%; (e)-(f) 10%; (g)-(h) 13%; (i)-(j) 15%. The
frequency axis for the left column is defined as ∆ω ) ωt - ωNB.

Figure 11. Signal field spectrograms, S(t, ωt), measured under the
ZZZZ (left) and ZXZX (right) polarization conditions for 0.01 M NaOH
solutions of cylindrical aggregates with various (vol %) concentrations
of methanol: (a)-(b) 0%; (c)-(d) 5%; (e)-(f) 10%; (g)-(h) 13%;
(i)-(j) 15%.
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methanol concentrations greater than 10%; fast dephasing may
suppress observation of these dynamics. Figure 9 shows that
the four distinct single exciton transitions merge into two bands
at methanol concentrations greater than 10%. Resolution of the
individual single exciton transitions is lost, which could indicate
fast dephasing dynamics for this morphology. It is interesting
that the line-narrowing capability of the nonlinear technique
makes possible the observation of three coherences in Figure
10g and i even though the transition to exciton e3 is unresolved
in the linear spectrum.

In summary, our assignment of coherence transfer in C8O3
is based on three criteria: (i) resemblance of the calculated and
experimental linear spectrum shown in Figure 13a; (ii) agree-
ment between the calculated and experimental spectral ampli-
tudes for the two tensor elements in Figure 13b and c; (iii) the
similarity of the measured and calculated spectrogram shapes
in Figures 6i and 12a-c. We believe that differences between
the calculated and experimental data are mainly due to the
model’s assumption of homogeneous line broadening. Adding
an inhomogeneous component to the line shape of the model
system would yield nonlinear signals with broader line widths.
The line-narrowing effect predicted in section II.A assumes only
homogeneous dephasing in the three intervals between field-
matter interactions. The cancellation between Γab and ΛNB in
the denominator of eq 10 is not obtained when dynamics in the
three time intervals are correlated by inhomogeneous line
broadening.

Our model’s neglect of vibronic coupling is a strong
approximation for the C8O3 aggregate. Most importantly,
vibrational resonances are not detected at Raman shifts of
200-3500 cm-1 when the narrowband pulse width is reduced
to 30 cm-1. Weak vibronic coupling should be expected for
C8O3. The exciton states are spatially delocalized such that their
excitation produces only minor changes in the charge distribu-
tion surrounding localized nuclear modes (e.g., bond-stretching
vibrations). For the same reason, the chlorosome of green
bacteria possesses a weak Raman response (i.e., small
Huang-Rhys factors).64 The extremely small Stokes shift of
C8O3 is also consistent with the view that its delocalized excited
states are associated with weak nuclear reorganization.65

V. Conclusion

This paper establishes the utility of a specialized nonlinear
spectroscopy for investigating the dynamics of intraband
electronic coherences in molecular aggregates. The strength of
this approach derives from the use of both narrowband and
broadband laser pulses, which enables fast data acquisition rates
and full suppression of the interfering population response
present in conventional pump-probe and photon echo spec-
troscopies. We have shown this technique to be a viable method
for the detection of coherence transfer processes, which are
otherwise difficult to measure in complex systems. Methods
applying all-femtosecond pulses can additionally resolve the t1

and t3 intervals between field-matter interactions, thereby
obtaining information to which the present technique is insensi-
tive.22 However, the use of a narrowband laser pulse allows for
superior selectivity of the coherences prepared in t2. For
example, in this paper, the bra side of the density operator is
associated with only one excited state because the narrowband
pulse overlaps with a single transition in the ground state
absorption spectrum. The most appropriate experimental method
(i.e., all femtosecond versus mixed narrowband and broadband
pulses) is dictated by the particular system and information
sought.

Figure 12. ZZZZ - ZXZX linear combination of signal field spectro-
grams for 0.01 M NaOH solutions of cylindrical aggregates with various
(vol %) concentrations of methanol: (a) 0%; (b) 5%; (c) 10%; (d) 13%;
(e) 15%.

Figure 13. (a) Overlay of measured (black) and calculated (red) linear
absorption spectra. Overlay of measured (black) and calculated (red)
spectral amplitudes for the (b) ZZZZ and (c) ZXZX tensor elements.
Calculated signals use the parameters of Table 1. The measured signals
are for the solution with 0% methanol.
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Five different morphologies of the C8O3 molecular aggregate
produced by varying the concentration of methanol in an
aqueous solvent have been investigated. Coherence transfer
processes are detected for morphologies associated with metha-
nol concentrations less than 13% (vol %). All coherences probed
in this paper have in common an exciton localized on the inner
cylinder wall as one component of the superposition of excited
states. Future work will examine coherences between pairs of
excitons not probed here and explore the information provided
by a wider variety of tensor elements. We will also investigate
the sensitivity of the present experiment to correlated fluctuations
of the individual exciton levels.25 Ultimately, we aim to establish
a complete picture of the electronic structure and relaxation
dynamics of the C8O3 molecular aggregate with the information
provided by a variety of nonlinear spectroscopies. The present
measurements represent an important step toward this goal.
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Appendix A. Response Functions in Homogeneous Limit
Without Coherence Transfer

This Appendix presents expressions for four terms in the
material response function valid in the homogeneous limit of
line broadening.20,35 Feynman diagrams corresponding to these
terms are given in Figure 3a. Index g represents the ground
electronic state, whereas a, b, and c are dummy indices
corresponding to all excited state energy levels.

0R1(t1, t2, t3) ) ( i
p)3 ∑

ab

µagµgbµbgµgaIag(t1)Iab(t2)Iag(t3)

(A1)

0R1*(t1, t2, t3) ) ( i
p)3 ∑

abc

µgaµcgµbcµabIga(t1)Ica(t2)Iba(t3)

(A2)

0R2(t1, t2, t3) ) ( i
p)3 ∑

ab

µgbµagµbgµgaIgb(t1)Iab(t2)Iag(t3)

(A3)

0R2*(t1, t2, t3) ) ( i
p)3 ∑

abc

µcgµgaµbcµabIcg(t1)Ica(t2)Iba(t3)

(A4)

where

Iab(t) ) θ(t) exp(-iωabt - Γabt) (A5)

Appendix B. Response Functions in Homogeneous Limit
With Coherence Transfer

This Appendix presents response functions corresponding to
each Feynman diagram in Figure 3b. Index g represents the
ground electronic state, whereas a, b, c, d, and e are dummy
indices running over all excited state energy levels.

1R1(t1, t2, t3) ) ( i
p)3 ∑

abc

〈Rbg�gaγgbφcg〉Kag,cg(t1)Icb(t2)Icg(t3)

(B1)

2R1(t1, t2, t3) ) ( i
p)3 ∑

abc

〈Rbg�gaγgbφcg〉Iag(t1)Kab,cb(t2)Icg(t3)

(B2)

3R1(t1, t2, t3) ) ( i
p)3 ∑

abc

〈Rbg�gaγgbφcg〉Iag(t1)Iab(t2)Kag,cg(t3)

(B3)

1R2*(t1, t2, t3) ) ( i
p)3 ∑

abcd

〈Rag�gcγdbφba〉Kcg,dg(t1)Ida(t2)Iba(t3)

(B4)

2R2*(t1, t2, t3) ) ( i
p)3 ∑

abcde

〈Rag�gcγebφbd〉Icg(t1)Kca,ed(t2)Ibd(t3)

(B5)

3R2*(t1, t2, t3) ) ( i
p)3 ∑

abcde

〈Rag�gcγcbφed〉Icg(t1)Ica(t2)Kba,ed(t3)

(B6)

2R2(t1, t2, t3) ) ( i
p)3 ∑

abc

〈Rbg�gaγgbφcg〉Igb(t1)Kab,cb(t2)Icg(t3)

(B7)

3R2(t1, t2, t3) ) ( i
p)3 ∑

abc

〈Rbg�gaγgbφcg〉Igb(t1)Iab(t2)Kag,cg(t3)

(B8)

1R1*(t1, t2, t3) ) ( i
p)3 ∑

abcd

〈Rag�gcγcbφbd〉Kga,gd(t1)Icd(t2)Ibd(t3)

(B9)

2R1*(t1, t2, t3) ) ( i
p)3 ∑

abcde

〈Rag�gcγebφbd〉Iga(t1)Kca,ed(t2)Ibd(t3)

(B10)

3R1*(t1, t2, t3) ) ( i
p)3 ∑

abcde

〈Rag�gcγcbφed〉Iga(t1)Ica(t2)Kba,ed(t3)

(B11)

where Kab,cd(t) and Φab,cd are given by eqs 17 and 18,
respectively.

Appendix C. Total Response Function

This appendix presents the total nonlinear response function used
to compute signals by numerical integration of eq 2. The use
of dummy indices allows application to arbitrary systems (e.g.,
the model system of Figure 4b). Only resonant terms survive
integration of eq 2.

R1(t1, t2, t3) ) ( i
p)3 ∑

ab

〈Rbg�gaγgbφag〉 ×

{Jag(t1)Iab(t2)Iag(t3) + Iag(t1)Jab(t2)Iag(t3)

+ Iag(t1)Iab(t2)Jag(t3)} + 1R1(t1, t2, t3)

+ 2R1(t1, t2, t3) +
3R1(t1, t2, t3) (C1)

R2*(t1, t2, t3) ) ( i
p)3 ∑

abc

〈Rag�gcγcbφba〉 ×

{Jcg(t1)Ica(t2)Iba(t3) + Icg(t1)Jca(t2)Iba(t3) +

Icg(t1)Ica(t2)Jba(t3)} + 1R2*(t1, t2, t3) +
2R2*(t1, t2, t3) +

3R2*(t1, t2, t3) (C2)
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R2(t1, t2, t3) ) ( i
p)3 ∑

ab

〈Rbg�gaγgbφag〉 ×

{Jgb(t1)Iab(t2)Iag(t3) + Igb(t1)Jab(t2)Iag(t3) +

Igb(t1)Iab(t2)Jag(t3)} + 1R2(t1, t2, t3) +
2R2(t1, t2, t3) +

3R2(t1, t2, t3) (C3)

R1*(t1, t2, t3) ) ( i
p)3 ∑

abc

〈Rag�gcγcbφba〉 ×

{Jga(t1)Ica(t2)Iba(t3) + Iga(t1)Jca(t2)Iba(t3) +

Iga(t1)Ica(t2)Jba(t3)} + 1R1*(t1, t2, t3) +
2R1*(t1, t2, t3) +

3R1*(t1, t2, t3) (C4)

where

Jab(t) ) Iab(t) exp(-
abt) (C5)

and


ab ) ∑
cd

κab,cdΦab,cd (C6)

Φab,cd is given by eq 18.

Appendix D. Calculating Linear Absorption Spectra With
Coherence Transfer

The linear absorption spectra, ε(ω), in Figures 4, 5, and 13 are
calculated with

ε(ω) ) ∑
a

|µag|2Re∫0

∞
dt exp[i(ω - ωag)t - Γagt - 
agt]

(D1)

where 
ag is given by eq C6.

Supporting Information Available: R2, R1*, and R2* terms
in response function found under approximations of section II.A.
Example of raw signals and discussion of the solvent response.
This information is available free of charge via the Internet at
http://pubs.acs.org.
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